33 research outputs found

    Exploring auditory-motor interactions in normal and disordered speech

    Full text link
    Auditory feedback plays an important role in speech motor learning and in the online correction of speech movements. Speakers can detect and correct auditory feedback errors at the segmental and suprasegmental levels during ongoing speech. The frontal brain regions that contribute to these corrective movements have also been shown to be more active during speech in persons who stutter (PWS) compared to fluent speakers. Further, various types of altered auditory feedback can temporarily improve the fluency of PWS, suggesting that atypical auditory-motor interactions during speech may contribute to stuttering disfluencies. To investigate this possibility, we have developed and improved Audapter, a software that enables configurable dynamic perturbation of the spatial and temporal content of the speech auditory signal in real time. Using Audapter, we have measured the compensatory responses of PWS to static and dynamic perturbations of the formant content of auditory feedback and compared these responses with those from matched fluent controls. Our findings indicate deficient utilization of auditory feedback by PWS for short-latency online control of the spatial and temporal parameters of articulation during vowel production and during running speech. These findings provide further evidence that stuttering is associated with aberrant auditory-motor integration during speech.Published versio

    Behavioral, computational, and neuroimaging studies of acquired apraxia of speech

    Get PDF
    A critical examination of speech motor control depends on an in-depth understanding of network connectivity associated with Brodmann areas 44 and 45 and surrounding cortices. Damage to these areas has been associated with two conditions-the speech motor programming disorder apraxia of speech (AOS) and the linguistic/grammatical disorder of Broca's aphasia. Here we focus on AOS, which is most commonly associated with damage to posterior Broca's area (BA) and adjacent cortex. We provide an overview of our own studies into the nature of AOS, including behavioral and neuroimaging methods, to explore components of the speech motor network that are associated with normal and disordered speech motor programming in AOS. Behavioral, neuroimaging, and computational modeling studies are indicating that AOS is associated with impairment in learning feedforward models and/or implementing feedback mechanisms and with the functional contribution of BA6. While functional connectivity methods are not yet routinely applied to the study of AOS, we highlight the need for focusing on the functional impact of localized lesions throughout the speech network, as well as larger scale comparative studies to distinguish the unique behavioral and neurological signature of AOS. By coupling these methods with neural network models, we have a powerful set of tools to improve our understanding of the neural mechanisms that underlie AOS, and speech production generally

    Reliability of single-subject neural activation patterns in speech production tasks

    Full text link
    Traditional group fMRI (functional magnetic resonance imaging) analyses are not designed to detect individual differences that may be crucial to better understanding speech disorders. Single-subject research could therefore provide a richer characterization of the neural substrates of speech production in development and disease. Before this line of research can be tackled, however, it is necessary to evaluate whether healthy individuals exhibit reproducible brain activation across multiple sessions during speech production tasks. In the present study, we evaluated the reliability and discriminability of cortical functional magnetic resonance imaging data from twenty neurotypical subjects who participated in two experiments involving reading aloud mono- or bisyllabic speech stimuli. Using traditional methods like the Dice and intraclass correlation coefficients, we found that most individuals displayed moderate to high reliability, with exceptions likely due to increased head motion in the scanner. Further, this level of reliability for speech production was not directly correlated with reliable patterns in the underlying average blood oxygenation level dependent signal across the brain. Finally, we found that a novel machine-learning subject classifier could identify these individuals by their speech activation patterns with 97% accuracy from among a dataset of seventy-five subjects. These results suggest that single-subject speech research would yield valid results and that investigations into the reliability of speech activation in people with speech disorders are warranted.Accepted manuscrip

    The neural correlates of speech motor sequence learning

    Full text link
    Speech is perhaps the most sophisticated example of a species-wide movement capability in the animal kingdom, requiring split-second sequencing of approximately 100 muscles in the respiratory, laryngeal, and oral movement systems. Despite the unique role speech plays in human interaction and the debilitating impact of its disruption, little is known about the neural mechanisms underlying speech motor learning. Here, we studied the behavioral and neural correlates of learning new speech motor sequences. Participants repeatedly produced novel, meaningless syllables comprising illegal consonant clusters (e.g., GVAZF) over 2 days of practice. Following practice, participants produced the sequences with fewer errors and shorter durations, indicative of motor learning. Using fMRI, we compared brain activity during production of the learned illegal sequences and novel illegal sequences. Greater activity was noted during production of novel sequences in brain regions linked to non-speech motor sequence learning, including the BG and pre-SMA. Activity during novel sequence production was also greater in brain regions associated with learning and maintaining speech motor programs, including lateral premotor cortex, frontal operculum, and posterior superior temporal cortex. Measures of learning success correlated positively with activity in left frontal operculum and white matter integrity under left posterior superior temporal sulcus. These findings indicate speech motor sequence learning relies not only on brain areas involved generally in motor sequencing learning but also those associated with feedback-based speech motor learning. Furthermore, learning success is modulated by the integrity of structural connectivity between these motor and sensory brain regions.R01 DC007683 - NIDCD NIH HHS; R01DC007683 - NIDCD NIH HH

    Anomalous morphology in left hemisphere motor and premotor cortex of children who stutter

    Full text link
    Stuttering is a neurodevelopmental disorder that affects the smooth flow of speech production. Stuttering onset occurs during a dynamic period of development when children first start learning to formulate sentences. Although most children grow out of stuttering naturally, ∼1% of all children develop persistent stuttering that can lead to significant psychosocial consequences throughout one’s life. To date, few studies have examined neural bases of stuttering in children who stutter, and even fewer have examined the basis for natural recovery versus persistence of stuttering. Here we report the first study to conduct surface-based analysis of the brain morphometric measures in children who stutter. We used FreeSurfer to extract cortical size and shape measures from structural MRI scans collected from the initial year of a longitudinal study involving 70 children (36 stuttering, 34 controls) in the 3–10-year range. The stuttering group was further divided into two groups: persistent and recovered, based on their later longitudinal visits that allowed determination of their eventual clinical outcome. A region of interest analysis that focused on the left hemisphere speech network and a whole-brain exploratory analysis were conducted to examine group differences and group × age interaction effects. We found that the persistent group could be differentiated from the control and recovered groups by reduced cortical thickness in left motor and lateral premotor cortical regions. The recovered group showed an age-related decrease in local gyrification in the left medial premotor cortex (supplementary motor area and and pre-supplementary motor area). These results provide strong evidence of a primary deficit in the left hemisphere speech network, specifically involving lateral premotor cortex and primary motor cortex, in persistent developmental stuttering. Results further point to a possible compensatory mechanism involving left medial premotor cortex in those who recover from childhood stuttering.This study was supported by Award Numbers R01DC011277 (SC) and R01DC007683 (FG) from the National Institute on Deafness and other Communication Disorders (NIDCD). The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIDCD or the National Institutes of Health. (R01DC011277 - National Institute on Deafness and other Communication Disorders (NIDCD); R01DC007683 - National Institute on Deafness and other Communication Disorders (NIDCD))Accepted manuscrip

    Reliability of single-subject neural activation patterns in speech production tasks

    Get PDF
    Speech neuroimaging research targeting individual speakers could help elucidate differences that may be crucial to understanding speech disorders. However, this research necessitates reliable brain activation across multiple speech production sessions. In the present study, we evaluated the reliability of speech-related brain activity measured by functional magnetic resonance imaging data from twenty neuro-typical subjects who participated in two experiments involving reading aloud simple speech stimuli. Using traditional methods like the Dice and intraclass correlation coefficients, we found that most individuals displayed moderate to high reliability. We also found that a novel machine-learning subject classifier could identify these individuals by their speech activation patterns with 97% accuracy from among a dataset of seventy-five subjects. These results suggest that single-subject speech research would yield valid results and that investigations into the reliability of speech activation in people with speech disorders are warranted.R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HHS; T32 DC013017 - NIDCD NIH HHSAccepted manuscrip

    Representation of semantic typicality in brain activation in healthy adults and individuals with aphasia: a multi-voxel pattern analysis

    Full text link
    Author manuscript; available in PMC 2022 Jul 30. Published in final edited form as: Neuropsychologia. 2021 Jul 30; 158: 107893. Published online 2021 May 19. doi: 10.1016/j.neuropsychologia.2021.107893This study aimed to investigate brain regions that show different activation patterns between semantically typical and atypical items in both healthy adults and individuals with aphasia (PWA). Eighteen neurologically healthy adults and twenty-one PWA participated in an fMRI semantic feature verification task that included typical and atypical stimuli from five different semantic categories. A whole-brain searchlight multi-voxel pattern analysis (MVPA) was conducted to classify brain activation patterns between typical and atypical conditions in each participant group separately. Behavioral responses were faster and more accurate for typical vs. atypical items across both groups. The searchlight MVPA identified two significant clusters in healthy adults: left middle occipital gyrus and right calcarine cortex, but no significant clusters were found in PWA. A follow-up analysis in PWA revealed a significant association between neural classification of semantic typicality in the left middle occipital gyrus and reaction times in the fMRI task. When the typicality effect was examined for each semantic category at the univariate level, significance was identified in the visual cortex for fruits in both groups of participants. These findings suggest that semantic typicality was modulated in the visual cortex in healthy individuals, but to a lesser extent in the same region in PWA.P50 DC012283 - NIDCD NIH HHS; R01 DC002852 - NIDCD NIH HHS; R01 DC007683 - NIDCD NIH HHS; U01 DC014922 - NIDCD NIH HHSAccepted manuscrip

    An Investigation of Compensation and Adaptation to Auditory Perturbations in Individuals With Acquired Apraxia of Speech

    Get PDF
    Two auditory perturbation experiments were used to investigate the integrity of neural circuits responsible for speech sensorimotor adaptation in acquired apraxia of speech (AOS). This has implications for understanding the nature of AOS as well as normal speech motor control. Two experiments were conducted. In Experiment 1, compensatory responses to unpredictable fundamental frequency (F0) perturbations during vocalization were investigated in healthy older adults and adults with acquired AOS plus aphasia. F0 perturbation involved upward and downward 100-cent shifts versus no shift, in equal proportion, during 2 s vocalizations of the vowel /a/. In Experiment 2, adaptive responses to sustained first formant (F1) perturbations during speech were investigated in healthy older adults, adults with AOS and adults with aphasia only (APH). The F1 protocol involved production of the vowel /ε/ in four consonant-vowel words of Australian English (pear, bear, care, dare), and one control word with a different vowel (paw). An unperturbed Baseline phase was followed by a gradual Ramp to a 30% upward F1 shift stimulating a compensatory response, a Hold phase where the perturbation was repeatedly presented with alternating blocks of masking trials to probe adaptation, and an End phase with masking trials only to measure persistence of any adaptation. AOS participants showed normal compensation to unexpected F0 perturbations, indicating that auditory feedback control of low-level, non-segmental parameters is intact. Furthermore, individuals with AOS displayed an adaptive response to sustained F1 perturbations, but age-matched controls and APH participants did not. These findings suggest that older healthy adults may have less plastic motor programs that resist modification based on sensory feedback, whereas individuals with AOS have less well-established and more malleable motor programs due to damage from stroke

    A Wireless Brain-Machine Interface for Real-Time Speech Synthesis

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1371/journal.pone.0008218.Background Brain-machine interfaces (BMIs) involving electrodes implanted into the human cerebral cortex have recently been developed in an attempt to restore function to profoundly paralyzed individuals. Current BMIs for restoring communication can provide important capabilities via a typing process, but unfortunately they are only capable of slow communication rates. In the current study we use a novel approach to speech restoration in which we decode continuous auditory parameters for a real-time speech synthesizer from neuronal activity in motor cortex during attempted speech. Methodology/Principal Findings Neural signals recorded by a Neurotrophic Electrode implanted in a speech-related region of the left precentral gyrus of a human volunteer suffering from locked-in syndrome, characterized by near-total paralysis with spared cognition, were transmitted wirelessly across the scalp and used to drive a speech synthesizer. A Kalman filter-based decoder translated the neural signals generated during attempted speech into continuous parameters for controlling a synthesizer that provided immediate (within 50 ms) auditory feedback of the decoded sound. Accuracy of the volunteer's vowel productions with the synthesizer improved quickly with practice, with a 25% improvement in average hit rate (from 45% to 70%) and 46% decrease in average endpoint error from the first to the last block of a three-vowel task. Conclusions/Significance Our results support the feasibility of neural prostheses that may have the potential to provide near-conversational synthetic speech output for individuals with severely impaired speech motor control. They also provide an initial glimpse into the functional properties of neurons in speech motor cortical areas

    Neural substrates of verbal repetition deficits in primary progressive aphasia.

    Get PDF
    In this cross-sectional study, we examined the relationship between cortical thickness and performance on several verbal repetition tasks in a cohort of patients with primary progressive aphasia in order to test predictions generated by theoretical accounts of phonological working memory that predict phonological content buffers in left posterior inferior frontal sulcus and supramarginal gyrus. Cortical surfaces were reconstructed from magnetic resonance imaging scans from 42 participants diagnosed with primary progressive aphasia. Cortical thickness was measured in a set of anatomical regions spanning the entire cerebral cortex. Correlation analyses were performed between cortical thickness and average score across three phonological working memory-related tasks: the Repetition sub-test from the Western Aphasia Battery, a forward digit span task, and a backward digit span task. Significant correlations were found between average working memory score across tasks and cortical thickness in left supramarginal gyrus and left posterior inferior frontal sulcus, in support of prior theoretical accounts of phonological working memory. Exploratory whole-brain correlation analyses performed for each of the three behavioural tasks individually revealed a distinct set of positively correlated regions for each task. Comparison of cortical thickness measures from different primary progressive aphasia sub-types to cortical thickness in age-matched controls further revealed unique patterns of atrophy in the different subtypes.R01 DC007683 - NIDCD NIH HHSPublished versio
    corecore